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ABSTRACT

In this paper, we explore the application of a novel definition of information flow in network dynam-

ical system. The proposed definition of information flow is used for understanding the conformation

change in network dynamical systems. Information transfer between network components is used to

determine relative contributions of various subsystems in the network to the collective or the emergent

dynamics of the network. These relative contributions of information flow from individual subsys-

tems to network collective dynamics allows us to determine which subsystem is most influential for

the emergent dynamics of the network. Identification of such influential subsystem can be used to take

appropriate local control action at the subsystem level for enhancing or suppressing the network collec-

tive dynamics. We provide both model-based and data-driven approaches involving operator theoretic

methods for the identification of influential subsystem in the complex network.

The case studies in the IEEE 39-bus power system and I-80 transportation data, presented the po-

tential applications of information transfer in predicting global instability phenomenon and identifying

the dominant mode of traffic pattern. The future works focus on the nonlinear system and large scale

data for the further application of information transfer.
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CHAPTER 1. GENERAL INTRODUCTION

1.1 Background

Information flow, or information transfer, as it sometimes appears in the literature, refers to the

transference of information between two subspaces in a dynamical system through some processes, with

one subspace being the source, and another the receiver. Information flow is a fundamental concept in

general physics which has applications in a wide variety of disciplines such as neuroscience, material

science, atmosphere-ocean science, and turbulence research.

In some previous work, Liang and Kleeman (2007) proposed one rigorous formalism of directional

measure of information flow in general dynamic system. The analytical expression of information

transfer based on linear system, Sinha and Vaidya (2015), is equipped with the additional information

conservation property, which is not satisfied by older formalism. In this computational framework, the

directional information transfer between components of a network system reflects the predictability in

complex dynamical system, the Granger causality in event-related data, and identify the most influen-

tial node in social network. Furthermore, with the knowledge of the probability density function, the

formalism could be extended to nonlinear system. In the rest of this paper, we imply this definition by

using notion of information transfer.

1.2 Research Motivation

Dynamic behavior among a set of competitors for obtaining a maximum amount of influence from

other components in a dynamical network is both important and common phenomena in real world.

For example, the application of clustering method in social network is intuitively the identification of

most influential node in a network dynamical system. In the view of optimization problem, the goal of

clustering is to maximize the amount of information flow among the individual clusters.
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In the other hand, the clustering procedure is highly related to both the predictability of complex

system and the causality between state variables in different time steps. Hence, the information transfer

could also be applied for the purpose of clustering, prediction, and causality analysis. By observing the

information transfer of a properly modeled network system, one can predict and identify the most influ-

ential node of the large scale network. Compared with other existing prediction criteria or measures, the

advantage of information transfer lies in its flexibility of applications to non-convex problems and the

ability to explore the network structure, interesting phenomena like phase transition or conformation

change, in a more natural way.

1.3 Thesis Organization

In Chapter 2, this research-based thesis begins with a review of literature relative to older informa-

tion measure theory, famous applications of corresponding information measure, and classic scenarios

in the present study.

Chapter 3 contains the preliminary knowledge of information transfer definition, introducing the net

information transfer definition (B.Huang (2016)) and applied the model-based expression to understand

the conformation change in the coupled oscillators system. The net information transfer also present

the potential in predicting global instability in IEEE 39 bus power system.

Chapter 4 introduces a data-driven method based on Koopman Operator computing information

transfer, and applied to the traffic pattern analysis on the I-80 transportation data. The related simulation

results are also presented in Chao et al. (2016).

Chapter 5 summarizes all of the conclusions drawn from the thesis and plans for future work in

non-linear higher-order dynamical system.

References for each chapters contents are given at the end of the paper.



www.manaraa.com

3

CHAPTER 2. REVIEW OF LITERATURE

Since the establishment of the information theory (Shannon (2001)), quantification of information

flow has been an enduring problem. The challenge lies in that this is a real physical notion, while the

physical foundation is not as clear as those well-known physical laws.

During the past decades, formalisms have been established empirically or half-empirically based on

observations in the aforementioned diverse disciplines, among which are mutual information (Vastano

and Swinney (1988)), Granger causality (Barnett (2009), Granger (1980)) and transfer entropy (Kaiser

and Schreiber (2002), Schreiber (2000)). Particularly, transfer entropy is established with an emphasis

of the above transfer asymmetry between the source and receiver, so as to have the causal relation

represented; it has been successfully applied in many real problem studies. These formalisms, when

carefully analyzed, can be approximately understood as dealing with the change of marginal entropy

in the Shannon sense, and how this change may be altered in the presence of information flow (see

San Liang and Kleeman (2007), section 4). This motivates our research on the possibility of a rigorous

formalism when the dynamics of the system is known.

One thus expects that the concept of information flow/transfer may be built on a rigorous footing

when the dynamics are known, as is the case with many real world problems like those in atmosphere-

ocean science. And, indeed, X. S. Liang and R. Kleeman (2005) find that, for two-dimensional (2D)

systems, there is a concise law on entropy evolution that makes the hypothesis come true. Since then,

the formalism has been extended to systems in different forms and of arbitrary dimensionality, and has

been applied with success in benchmark dynamical systems and more realistic problems.

Specifically, Sinha and Vaidya (2015) proposed an axiom based definition of dynamical networks,

whose expression for the for n-dimensional discrete time linear system is unique, directional, and infor-

mation conservation property, which is not provided with exsiting definitions of information flow/transfer.

The general information transfer definition in this paper will be based on this paper, we investigated the
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conformation change in coupled oscillators system, provide some case studies on the power system

network. Subhrajit Sinha (2016) defined information transfer in the control dynamical system. The

averaged information transfer from Output to Input in a feedback control system is equal to the Bode

integral of the sensitivity transfer function from Output to Input. Hence, Information transfer is con-

nected with the structural controllability and structural observability.

Furthermore, the application of Koopman Operator method Schmid (2010) in computing the infor-

mation transfer will be introduced in an scenario of transportation data analysis.

In the following chapters, we will give a systematic introduction of the ”Net Information Transfer”

and a brief review of some important applications. As a convention in the history of development, the

terms information flow and information transfer will be used synonymously. Throughout this paper, by

entropy we always mean Shannon or absolute entropy, unless otherwise specified. Whenever a theorem

is stated, generally only the simulation result is given and interpreted; for detailed proofs, the reader is

referred to the original papers.
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CHAPTER 3. INFORMATION TRANSFER AND CONFORMATION CHANGE IN

NETWORK OF COUPLED OSCILLATOR AND POWER SYSTEM

In this chapter, we investigate the problem of conformation change in a network of coupled oscil-

lator system with double well internal potential. Conformation change refers to the phenomena where

all the oscillators in the network make a transition from one potential well to another potential well un-

der the influence of external perturbation. We propose a novel approach based on information transfer

in network dynamical systems to understand this phenomenon. We consider a heterogeneous network

system where the internal dynamics of the oscillators are assumed to be nonidentical and the intercon-

necting Laplacian can also be asymmetric. The objective is to determine which of the network oscillator

is most influential in driving the conformation dynamics. We show that the net information transfer of

individual oscillators can be used to determine the most influential oscillator which can drive the entire

network from one well to another well of the potential. Three different network topologies and one

power system network are used to verify our proposed framework.

3.1 Introduction

The conformation change in coupled oscillators system refers to phenomena where the network of

oscillators makes a transition from one potential well to another potential well when perturbed exter-

nally through excitation or change in initial condition. This is a fascinating dynamical systems phenom-

ena which have found a variety of applications. In a biological network, it is used to understand con-

formation change in DNA molecules. In Mezić (2006), dynamical system based approach is proposed

to investigate this phenomenon. Most common example of engineering application involving coupled

oscillator model is an electric power grid Salam et al. (1984). In network power system conformation

change can be used to understand instability and cascade failures in the power system Dobson et al.
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(2007); Y. Susuki (2008) . The focus of this paper is slightly different compared to existing literature

in this area. We consider a heterogeneous network of coupled oscillator where the internal dynamics

of the oscillators are assumed to be different and the interconnection Laplacian is nonsymmetric. The

only common feature of the oscillators is that all the internal dynamics are modeled as a double well

potential function. The objective is to determine which of the network oscillators is most influential in

driving the conformation change in the network. In particular, we are interested in identifying the leader

oscillator which when perturbed can cause the entire network oscillator to follow its state. The problem

is similar to the leader selection problem in network dynamical systems. The leader selection problem

has been studied in the context of linear network system Patterson and Bamieh (2010); Fardad et al.

(2011); Clark and Poovendran (2011); Fitch and Leonard (2013). The optimization-based approach

proposed for leader selection in the above reference cannot be applied to our problem because of the

nonlinear nature of dynamics involved.

In this paper, we propose a novel approach to analyze the phenomenon of conformation change in

a network of coupled oscillators. The approach is based on an information theoretic measure called

information transfer Sinha and Vaidya (2015); Vaidya and Sinha (2016). In particular, using analytical

expressions of information transfer, we use the information transferred from the different sub-spaces of

the state space to identify the most influential oscillator in the network and infer about the conformation

change. Roughly speaking, the amount of information transferred from any state (or sub-space, say x)

to any other state (or sub-space, say y) gives the amount of uncertainty contribution of x to y. Oscillator

l is said to be most influential if the net information transfer (this is defined later) of the oscillator l is the

largest. However, calculating the information transfer for non-linear systems requires the knowledge of

the probability density function and in general this is not known for non-linear systems. To compute

the information transfer in nonlinear network we exploiting the fact that the nonlinearity in the coupled

oscillator network is small (of order ε) and affects only the internal dynamics of the oscillator. We use

the analytical formula for information transfer in linear system to approximate the information transfer

in the weakly nonlinear coupled oscillator network. The results obtained using this approximation

are verified for the time domain simulations of the nonlinear system. For simulation purposes we use

the double well potential (with two minima at ±1 and a local maxima at 0). We verify the results

numerically by initializing the most influential node in the negative well of the potential and all the



www.manaraa.com

7

other oscillators in the positive well. We notice that the most influential oscillator is able to pull all

the other oscillators out of the positive well and put them in the negative well. The results allow us

to understand the role played by the internal dynamics of the oscillators and the network topology in

determining the most influential oscillators. We claim that our proposed information based approach

can also be applied to identify the influential agent or node in linear network dynamical system. In

fact, under the assumption that the dynamical system is linear, we provide an analytical expression for

information transfer. This analytical expression of information transfer can be used to understand the

influence structure and in the formulation of optimization problems to identify influential agent in linear

network system.

The organization of the paper is as follows. In Section 3.2, we provide preliminary and brief

overview of the proposed information transfer framework developed in Sinha and Vaidya (2016). Ap-

plication for the information transfer framework for identifying most influential oscillator with various

internal dynamics and network topology is discussed in Section 3.3. Conclusions and discussions are

presented in Section 3.4.

3.2 Preliminaries of Information Transfer

In this section, we briefly describe the information transfer framework in discrete dynamical systems

of the form

z(t+ 1) = f(z(t)) + ξ(t) (3.1)

where z(t) ∈ RN , ξ(t) ∈ RN are assumed to be vector valued random variables and ξ(0), ξ(1), . . .

are independent random vectors each having the same density g. The mapping f : RN → RN is

assumed to be at least continuous. Let z = (z1, . . . , zN )> ∈ RN . We are interested in finding the

information transfer from state zi to state zj , as the system evolves from time step t to time step t + 1.

We denote this transfer by the notation [Tzi→zj ]
t+1
t . More generally, we are also interested in deriving

the information transfer between the subspaces of the dynamical system. The definition of information

transfer is inspired from X. S. Liang and R. Kleeman (2005); A. J. Majda and J. Harlim (2007); Sinha

and Vaidya (2015), but, instead of absolute entropy we use the conditional entropy to characterize the
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information transfer. System (3.1) can be written as :

z(t+ 1) =

x(t+ 1)

y(t+ 1)

 =

fx(x, y)

fy(x, y)

+

ξx(t)

ξy(t)


:= f(x(t), y(t)) + ξ(t) (3.2)

where x ∈ R|x| and y ∈ R|y| with |x| denoting the dimension of the x sub-dynamics such that |x|+|y| =

N . By information, we mean the Shannon definition of information and the information of z at time

t is given by the entropy of the probability density ρt(z). The expression of information transfer is

governed by the propagation of the density function and this propagation is given by the following

Perron-Frobenius operator P : L1 → L1 Lasota and Mackey (1994)

ρt+1(z) = [Pρt](z) =

∫
RN

ρ(z̃)g(z − f(z̃))dz̃ (3.3)

Remark 1 For notational convenience we will use the notation ′ to denote the time instant t + 1, that

is, z(t+ 1) := z′ and z(t) := z.

To calculate the information transfer from x to y, we need to study the evolution of the density, not

only for (3.2), but also for the modified system, given by

x
′

= x

y
′

= fy(x, y) + ξy (3.4)

Following X. S. Liang and R. Kleeman (2005), we say that x is frozen (held constant), as the system

evolves from time step t to time step t + 1. Let ρ6x(y, t) be the probability density function with x

freezed from time instant t to t+ 1

With this, the information transfer from the x sub-space to the y sub-space, as the system evolved

from time step t to time step (t+ 1) is defined as

Definition 2 [Information transfer] The information transfer from x to y for dynamical system (3.1) as

the system evolves from time t to time t+ 1 (denoted by [Tx→y]t+1
t ) is given by following formula

[Tx→y]t+1
t = H(ρ(y(t+ 1)|y(t)))

−H(ρ6x(y(t+ 1)|y(t)) (3.5)
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where H(ρ(y)) = −
∫
R|y| ρ(y) log ρ(y)dy is the entropy of probability density function ρ(y) and

H(ρ6x(y(t+ 1)|y(t)) is the entropy of y(t+ 1), conditioned on y(t), where x has been freezed.

Remark 3 For notational convenience, we will drop the sub-script and super-script and will use the

notation Tx→y to denote the information transfer from x to y.

The above definition of information transfer can be understood by rewriting the expression of informa-

tion transfer as follows:

H(ρ(y(t+ 1)|y(t))) = [Tx→y]t+1
t +H(ρ 6x(y(t+ 1)|y(t))) (3.6)

According to equation (3.6), the the change in total entropy of y is equal to the transfer from x to y i.e.,

Tx→y and change in the entropy of y due to itself, that is, when x is freezed. The effect of freezing x is

to remove the contribution of x towards the the change in the entropy of y.

Equation (3.5) gives the information transfer from subspace x to subspace y as the dynamical system

(3.1) evolves from time step t to time step t + 1. The general expression of information transfer from

state zi to state zj is given by

[Tzi→zj ]
t+1
t = H(ρ(zj(t+ 1)|zj(t))−H(ρ 6zi(zj(t+ 1)|zj(t)) (3.7)

A novel outcome of our definition of information transfer is that it can be generalized to define

information transfer over n time steps for any n ∈ Z+.

3.2.1 n-step Information Transfer

The information transfer defined in Definition (2) gives the information transfer from x to y as the

system evolves from time step t to time step t + 1. So this can be viewed as a one-step information

transfer. One of the novel advantage of our definition of information transfer is that this definition can

be easily extended to define n-step information transfer form x to y, that is, the information transfer

from x to y as the system evolves from time step t to time step t+ n, for n ∈ Z+. To define the n-step

information transfer, we introduce the following notation

yt+n
t = (y(t+ n), y(t+ n− 1), · · · , y(t)).

Then the n-step information transfer is defined as
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Definition 4 (n-step Information Transfer) The information transfer over n > 0 time steps from x to

y, denoted as [Tx→y]t+n
t , as the dynamical system (3.1) evolves from time step t to time step t + n is

defined as

[Tx→y]t+n
t = H

(
ρ(y(t+ n)|yt+n−1

t )
)

−H 6x
(
ρ(y(t+ n)|yt+n−1

t )
)

(3.8)

where H 6x
(
ρ(y(t+ n)|yt+n−1

t )
)

is the conditional entropy of y(t + n), conditioned on its n − 1 time

step past and throughout this evolution, x is held frozen.

With this definition of n-step transfer, one has

Theorem 5
n∑

i=1

[Tx→y]t+i
t = H(ρ(yt+n

t ))−H6x(ρ(yt+n
t )) (3.9)

The proof is omitted due to space constraints.

3.2.2 Information Transfer in Linear Dynamical System

In linear systems, with additive Gaussian noise, the linearity property allows us to give closed form

expressions for the information transfer. Consider the following stochastic perturbed linear dynamical

system

z(t+ 1) = Az(t) + σξ(t) (3.10)

where z(t) ∈ RN and ξ(t) is vector valued Gaussian random variable with zero mean and unit variance.

We assume that the initial condition is Gaussian with zero mean and covariance Σ(0). Since the system

is linear, the distribution of the system state for all future time will remain Gaussian with covariance

Σ(t) satisfying

AΣ(t− 1)A> + σ2I = Σ(t)

To define the information transfer between various subspaces we again introduce following notation to

split the A matrix

z(t+ 1) =

x′

y
′

 =

Ax Axy

Ayx Ay


x
y

+ σξ (3.11)
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The covariance matrix can be similarly split as Σ =

Σx Σxy

Σyx Σy

. With this decomposition, it can be

shown that the information transfer from x to y is

[Tx→y]t+1
t =

1

2
log
|AyxΣS

y (t)A>yx + σ2Iy|
|σ2Iy|

(3.12)

where ΣS
y = Σx(t)− ΣxyΣy(t)−1Σ>xy is the Schur complement of Σy(t) in Σ(t) and Iy is the identity

matrix of dimension of y.

The general expression for the information transfer from state z1 to z2 can also be found and can be

expressed as

[Tz1→z2 ]t+1
t =

1

2
log

|Az2z 62Σs
z2(t)A>z2z 62 + σ2I|

|Az2z 61 62(Σs
z2)z 61A

>
z2z 61 62

+ σ2I|
(3.13)

where

A = [Aij ], i, j = 1, 2, · · · , N

and

Az2z 62 :=

(
Az2z1 Az2z3 . . . Az2zN

)
Az2z 61 62 :=

(
Az2z3 Az2z4 . . . Az2zN

)
are row vectors. Σs

z2 and (Σs
z2)z 61 are the Schur complement of Σz2 in Σ and Σz 61 respectively. The

matrix Σ 6z1 is the covariance matrix obtained from Σ(t) by deleting the row and column corresponding

to z1 state. For a detailed discussion of the definition and basic properties of information transfer see

Sinha and Vaidya (2016).

3.3 Information Transfer and Conformation Dynamics

In this section, we present results on the application of information transfer to understand confor-

mation dynamics in network of coupled oscillator systems. In particular, we use information transfer

to understand influence structure in network dynamical system and to determine which network com-

ponent is most influential for causing conformation change in the network of coupled oscillator. The

dynamical model for the coupled oscillator system is written as follows:

mkθ̈k = −ε ∂V
∂θk

(θk)− Lkθ − dθ̇k, k = 1, . . . , N (3.14)



www.manaraa.com

12

where mk and dk are the mass and damping coefficient of the kth oscillator. V is the internal potential

of the oscillators and and assumed to be double well (Fig. 3.1(a)) Lk is the kth row of the interaction

Laplacian and ε > 0 is assumed to be small parameter. Let xk = (θk, θ̇k) be the state of the kth agent

and xck denotes the state of rest of the agents excluding the kth agents. To determine the influence of

kth agent on the rest of the network we will compute the information flow from kth agent to the rest of

the network and vice versa, i.e., Txk→xc
k

and Txc
k→xk

. The net information transfer from kth agent to

the rest of the network is denoted by NeTxk
and is defined as follows :

NeTxk
:= Txk→xc

k
− Txc

k→xk
(3.15)

The objective is to use the information transfer from individual oscillator and net information transfer as

defined above to determine which oscillator is most responsible for conformation change. Conformation

change is defined as a phenomena where one of the oscillator initialized in negative side of the potential

well at −1 can pull all the other oscillators of the network, initialized in the positive well at +1, to the

negative well.

Computing the information transfer for general nonlinear network system will require us to propa-

gate the probability density function. However, propagation of probability density function for general

nonlinear system is a challenging problem. We exploit the fact that the nonlinearity in the coupled oscil-

lator system is of order ε and it affects only the internal dynamics of the oscillators to approximate the

information transfer in the nonlinear network with its linear approximation obtained by taking ε = 0,

so that the linear approximate model of the network is given by

mkθ̈k = −Lkθ − dθ̇k, k = 1, . . . , N (3.16)

We make use of the analytical expression for information transfer for general linear system as derived in

Section 3.2 to determine the information transfer between kth oscillator of the network and its comple-

ment and the net information transfer. Although the information transfer is computed using the linear

approximation of the nonlinear network, the time domain simulation for verifying the conformation

change is obtained using the nonlinear network model.

The double well potential is defined using following parameters

V (θ) = E(Cθ4 − θ2).
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Figure 3.1 (a) Double well potential. (b) Phase portrait of a single oscillator.

The phase portrait of the single oscillator for the parameter value of E = 2 and C = 0.5 is shown in

Fig. 3.1(b). The phase portrait for a single oscillator system consists of three equilibrium point. The

two stable equilibrium points at (±1, 0) correspond to the local minima of the potential function shown

in Fig. 3.1(a). The unstable equilibrium point at the origin corresponds to the local maxima of the

double well potential. The system will settle at one of the stable equilibrium point depending on the

initial conditions. When the oscillators are interconnected through the Laplacian, L, the network system

continues to have these three equilibrium points due to the Laplacian property of the interconnection.

To which of the two stable equilibrium point the network system will converge to, is now a function

of not only the state of the individual oscillator but also the interconnection Laplacian. In particular,

the domain of attraction of the stable equilibrium point will be a complicated function of parameters

describing internal dynamics of the oscillators and the interconnection Laplacian. In the following we

show that the information transferred from individual oscillators to the network and vice versa can be

used to understand this conformation change phenomena.

In all the following examples, one agent (say x1) is initialized at the negative well, while the rest

of the oscillators start at the well which has the minima at 1 and we study how agent x1 influence the

rest of the agents to change their conformation, that is, how x1 makes the rest of the agents cross the

potential barrier and flip over to the well with the minima at −1.
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3.3.1 Case I : Nearest neighbour network with nonidentical internal dynamics

The first set of simulations is performed with nearest neighbour topology, as shown in Fig. 3.2. We

take 10 oscillators and masses of all the oscillators mk, k = 2, · · · , 10 are mk = .15 and the mass

of oscillator 1 is m1 = 3.75. The damping co-efficient d = .05 is assumed to be identical for all the

oscillators.

(a)

L =



40 −20 0 0 0 0 0 0 0 −20
−20 40 −20 0 0 0 0 0 0 0
0 −20 40 −20 0 0 0 0 0 0
0 0 −20 40 −20 0 0 0 0 0
0 0 0 −20 40 −20 0 0 0 0
0 0 0 0 −20 40 −20 0 0 0
0 0 0 0 0 −20 40 −20 0 0
0 0 0 0 0 0 −20 40 −20 0
0 0 0 0 0 0 0 −20 40 −20
−20 0 0 0 0 0 0 0 −20 40


***************

L =



30 −10 0 0 −10 0 −10 0 0 0
−10 30 −10 0 0 −10 0 0 0 0
0 −10 20 −10 0 0 0 0 0 0
0 0 −10 20 0 0 0 0 0 −10
−10 0 0 0 20 −10 0 0 0 0
0 −10 0 0 −10 30 0 0 0 −10
−10 0 0 0 0 0 20 −10 0 0
0 0 0 0 0 0 −10 20 −10 0
0 0 0 0 0 0 0 −10 20 −10
0 0 0 −10 0 −10 0 0 −10 30



1

(b)

1 10

2 3 4

5 6

7 8 9

(c)

L =



40 −20 0 0 0 0 0 0 0 −20
−20 40 −20 0 0 0 0 0 0 0
0 −20 40 −20 0 0 0 0 0 0
0 0 −20 40 −20 0 0 0 0 0
0 0 0 −20 40 −20 0 0 0 0
0 0 0 0 −20 40 −20 0 0 0
0 0 0 0 0 −20 40 −20 0 0
0 0 0 0 0 0 −20 40 −20 0
0 0 0 0 0 0 0 −20 40 −20
−20 0 0 0 0 0 0 0 −20 40


***************

L =



30 −10 0 0 −10 0 −10 0 0 0
−10 30 −10 0 0 −10 0 0 0 0
0 −10 20 −10 0 0 0 0 0 0
0 0 −10 20 0 0 0 0 0 −10
−10 0 0 0 20 −10 0 0 0 0
0 −10 0 0 −10 30 0 0 0 −10
−10 0 0 0 0 0 20 −10 0 0
0 0 0 0 0 0 −10 20 −10 0
0 0 0 0 0 0 0 −10 20 −10
0 0 0 −10 0 −10 0 0 −10 30



1

(d)

1

Figure 3.2 Nearest neighbour topology

We compute the information transfer from each agent to its complement sub-space (Txk→xc
k
) using

the linear system information transfer formula (3.12) and the linear model of the oscillator network

(equation (3.16))and this is shown in Table 3.1. We also show the information that each agent receives

from its complement (Txc
k→xk

) and this is shown in Table 3.2. In the tables, the notation ok is the kth

oscillator.

Table 3.1 Information transferred by individual agent

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
2.1 1.6 1.9 1.8 1.7 1.7 1.7 1.8 1.9 1.6

Table 3.2 Information received by individual agent

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
.07 2.3 2.2 2.1 2 2 2 2.1 2.2 2.3

While the information transfer and information received values gives some idea about the influential

oscillator (the larger the information transfer from an oscillator, more is its influence), these are not

sufficient to decide which oscillator is the most influential. However, if we look at the net information

transfer for each oscillator (3.15), we find that the most influential oscillator has positive net transfer,
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Table 3.3 Net information transfer of individual agent for m1 = 1.25

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
2 -0.6 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.6

while all the other oscillators have negative net transfer. The net information transfer for all oscillators

are given in Table 3.3. All the values of information transfers given in the tables are for the case when

oscillator 1 is able to pull the other oscillators to its own potential well.

time
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x
k
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-1.5

-1

-0.5

0

0.5

1

1.5
x

avg

Figure 3.3 The trajectories converge to negative well

Figure 3.3 shows the trajectories of the oscillators when the first oscillator is able to pull all the

oscillators to its own well. In this case we chose m1 = 3.75 and the other masses to be mk = .15 and

for time domain simulations, we simulated the original system given by equation (3.14) with ε = .05

and we find that in this case oscillator 1 is able to pull all the other oscillators to the negative well. In the

Figure 3.3 the solid lines correspond to the position of individual oscillator and the dotted line shows

the average position of all the oscillators.

However, it is not always that the most influential oscillator can pull all the other oscillators to its

own potential well. Depending upon the system parameters, it may happen that the most influential

oscillator can pull only a fraction of the oscillators to its own well. Quantifying the minimum amount

of information that needs to be exchanged so that the most influential oscillator is able to pull all the

other oscillators to its own potential well is an interesting problem and is left for further investigations.
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3.3.2 Case II : Leader-follower network with identical internal dynamics

In the second set of simulations, we consider the leader-follower network with identical internal

dynamics. In the network, there are directed paths from oscillator 1 to all the other oscillators and there

are no other paths. This is shown in Figure 3.4.

Figure 3.4 Leader-follower network

The masses of all the oscillators are assumed to be 0.5 and the damping co-efficient is d = 0.05. In

this topology, only oscillator 1 is sending out information and all the other oscillators are receiving in-

formation and the net information transfer is positive for oscillator 1 and for all of the other oscillators it

is negative (Table 3.4). Hence, we conclude that oscillator 1 is the most influential. The net information

transfer, calculated using the approximate linear model (3.16), is shown in Table 3.4.

Table 3.4 Net information transfer

o1 o2 o3 o4 o5
3.0557 -2.3659 -2.3659 -2.3659 -2.3659

This conclusion is in fact confirmed by time domain simulations, shown in Figure 3.5, where we

find that all the oscillators flip over to the other well and ultimately settle at −1. For the time domain

simulations, we use the exact model of the oscillators, given by equation (3.14), with ε = 0.05.

Next we modify the topology a little by adding a weak link from oscillator 2 to oscillator 1. This,

along with the associated Laplacian is shown in Figure 3.6. Furthermore, the mass of oscillator 2

is increased to 50 and the other masses have masses m = .5. The other parameters remain the same.

In this case, with the change in the network topology and internal dynamics, oscillator 1 is no longer

the most influential, even though it is connected to all the other oscillators. This is verified by the fact

that the net information transfer for oscillator 2 is maximum and this means that it is the leader in the
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Figure 3.5 Oscillator 1 is the leader

Figure 3.6 Modified leader follower network

network. The net information transfer is shown in Table 3.5.

Table 3.5 Net information transfer

o1 o2 o3 o4 o5
1.5727 3.5146 -5.5743 -5.5743 -5.5743

This is again consistent with the time domain simulation of the exact oscillator network model. In

this case the second oscillator is initialized at the negative well and all the other oscillators are initialized

at the positive well. The trajectories are shown in Figure 3.7. From the figure we find that oscillator 2

does indeed pull all the other oscillators to its own well and hence is the most influential node in the

coupled oscillators network.
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Figure 3.7 Trajectories of the oscillators

3.3.3 Case III : An undirected network

In this set of simulation we consider the undirected network whose topology is given in Figure 3.8.

This network has been studied in Zhao et al. (2014).

(a)

L =



40 −20 0 0 0 0 0 0 0 −20
−20 40 −20 0 0 0 0 0 0 0
0 −20 40 −20 0 0 0 0 0 0
0 0 −20 40 −20 0 0 0 0 0
0 0 0 −20 40 −20 0 0 0 0
0 0 0 0 −20 40 −20 0 0 0
0 0 0 0 0 −20 40 −20 0 0
0 0 0 0 0 0 −20 40 −20 0
0 0 0 0 0 0 0 −20 40 −20
−20 0 0 0 0 0 0 0 −20 40


***************

L =



30 −10 0 0 −10 0 −10 0 0 0
−10 30 −10 0 0 −10 0 0 0 0
0 −10 20 −10 0 0 0 0 0 0
0 0 −10 20 0 0 0 0 0 −10
−10 0 0 0 20 −10 0 0 0 0
0 −10 0 0 −10 30 0 0 0 −10
−10 0 0 0 0 0 20 −10 0 0
0 0 0 0 0 0 −10 20 −10 0
0 0 0 0 0 0 0 −10 20 −10
0 0 0 −10 0 −10 0 0 −10 30



1

(b)

1 10

2 3 4

5 6

7 8 9

(c)

L =



40 −20 0 0 0 0 0 0 0 −20
−20 40 −20 0 0 0 0 0 0 0
0 −20 40 −20 0 0 0 0 0 0
0 0 −20 40 −20 0 0 0 0 0
0 0 0 −20 40 −20 0 0 0 0
0 0 0 0 −20 40 −20 0 0 0
0 0 0 0 0 −20 40 −20 0 0
0 0 0 0 0 0 −20 40 −20 0
0 0 0 0 0 0 0 −20 40 −20
−20 0 0 0 0 0 0 0 −20 40


***************

L =



30 −10 0 0 −10 0 −10 0 0 0
−10 30 −10 0 0 −10 0 0 0 0
0 −10 20 −10 0 0 0 0 0 0
0 0 −10 20 0 0 0 0 0 −10
−10 0 0 0 20 −10 0 0 0 0
0 −10 0 0 −10 30 0 0 0 −10
−10 0 0 0 0 0 20 −10 0 0
0 0 0 0 0 0 −10 20 −10 0
0 0 0 0 0 0 0 −10 20 −10
0 0 0 −10 0 −10 0 0 −10 30



1

(d)

1

Figure 3.8 An undirected network

From the network topology itself, it is not possible to identify the most influential node. For con-

formation analysis of this network, we assume m1 = 10 and all the other oscillators have mass m = 1,

the damping co-efficient d = 0.6 and ε = 0.05. We initialize oscillator 1 in the negative well and all

the other oscillators in the positive well. With these initialization, the trajectories of the oscillators are

shown in Figure 3.9.

From this we see that agent 1 is able to pull all the other oscillators to the negative well and hence it

is the most influential agent. This is again confirmed by the net information transfer for individual agent,

where from Table 3.6, we find that only oscillator 1 has a positive net information transfer, whereas, all
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Figure 3.9 Oscillator 1 is most influential

the other oscillators have a negative net information transfer. In this case also, the information transfer

is calculated using the approximate linear model of the oscillator network.

Table 3.6 Net information transfer for m1 = 10

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
0.3 -0.2 -.08 -.08 -0.1 -0.2 -0.1 -.08 -.08 -.2

Table 3.7 Net information transfer for m1 = m10 = 10

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
0.4 -0.3 -.1 -.2 -0.1 -0.3 -0.2 -.1 -.2 .3

In the second set of simulations, we assume that m1 = m10 = 10 and the rest of the masses are

equal to one. In this case, just by looking at the masses, one can not say which is the most influential

oscillator. But from Table 3.7, we find that the net information transfer of oscillator 1 is maximum and

so we infer that oscillator 1 is still the most influential oscillator in the network.

This is, in fact, verified by the time domain simulations performed using the exact oscillator model.

For this set of simulations, we initialize oscillator 1 at the negative well and all the other oscillators at

the positive well. From Figure 3.10, we find that even though m10 = m1 = 10, oscillator 1 can pull

all the other oscillators over to the negative well and hence it is the most influential. So this example

verifies that the net information transfer can be used as a measure to determine the most influential node

in a network.
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Figure 3.10 Position of the oscillators with m1 = m10 = 10.

3.3.4 Case IV : IEEE 39-bus system

In this set of simulation, a more practical application is considered for validation of instability

analysis. The IEEE 10-machine 39-bus test system (New England system, Pai (1989)), which is used

to implement the proposed scheme, has 10 generators and 46 lines. Its one-line diagram is shown in

Figure 3.11(a). As a counterpart of mass of oscillators, the inertia constants of each generators are listed

in Table 3.8, where the Generator 2 has largest inertia constant. In the multi-machine power system, due

to the topology of the complex network and distribution of inertia, the local disturbance of individual

generator may or maynot lead to the global instability, which is undesirable in the real power system.

Table 3.8 Generator inertia constants in the IEEE 39-bus system in seconds

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

30.3 500 35.8 28.6 26 34.8 26.4 24.3 34.5 42

To investigate the occurrence of global instability in this power system, we introduce the following

system of swing equations with linear coupling,

δ̇i = ωi,

miω̇i = pm − b sin δi − bint[Lδ]i − dωi.

(3.17)

The only difference between the system(3.17) and the coupled oscillator system(3.14) is the internal

dynamics changing to sin(δ), hence to apply the information transfer expression for the linear model,

we assume b is a very small value compared with bint. The parameters for numerical simulations
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(a)

(b)

Figure 3.11 (a) Single-line diagram of IEEE 39-bus New England system. (b) Laplacian matrix.

are in per-unit system and are given as follows: pm = 0.009, b = 0.01, bint = 1 and d = 0.05.

The Laplacian matrix of the reduced 10 generators, L in Figure 3.11(b), is based on the package of

Matpower(Zimmerman et al. (2011)).

The first set of simulation is implemented under the local disturbance from Generator 1, when

δ1(0) = 2.5, which is outside of the homoclinic orbit. The time domain simulation in Figure 3.12

shows that the Generator 1 is not able to pull the whole system out of the homoclinic orbit Γ0, even

when δ1(0) starts from outside of Γ0, and all the other generators starts from δi = 1. From this we see

that the individual generator connected to all the others still can not affect most to the global instability.

This could be confirmed by the net information transfer for individual generator, where from Table 3.9,

we can see that only generator 2 has a positive net information transfer, whereas, all the other generators

have a negative net information transfer.



www.manaraa.com

22

time
0 1000 2000 3000 4000 5000

/ k

-0.5

0

0.5

1

1.5

2

2.5
/

avg

(a) The trajectories of δ1 to δ10 and δ̄
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(b) Collective dynamics converges in homoclinic orbit

Figure 3.12 The global stability of system holds when δ1(0) = 2.5

Table 3.9 Net information transfer for IEEE 39 bus system

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
-0.7 2.0 -1.3 -0.6 -0.5 -0.4 -0.7 -0.9 -0.7 -0.6

The time domain simulation in Figure 3.13 validates our conclusion from the net information trans-

fer, when we initialize δ2(0) from 2.5, which is outside of the homoclinic orbit Γ0, all the generators

are pulled out of the homoclinic orbit. The power system’s global instability could be judged by the

most influential generator in the complex network, which is reflected by the net information transfer for

individual generators. We infer that generator 2 is the most influential generator in the 39 bus system. In

this scenario, the distribution of inertia obviously dominates the global instability of the power system.
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(a) The trajectories of δ1 to δ10 and δ̄
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(b) Collective dynamics shows instability

Figure 3.13 The system goes to unstable when δ2(0) = 2.5
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Furthermore, when we increase the number of local disturbance generators, in Figure 3.14, local

disturbance from 2 generators (G1, G3) still can’t lead to global instability of the power system. In

Figure 3.15, 3 generators (G1, G3, G4) under the disturbance can pull the system to be unstable globally.

This could also be judged from the net information transfer values. Since NeT (g2) + NeT (g1) +

NeT (g3) = 2.0 − 1.3 − 0.7 = 0, when 3 generators (G1, G3, G4) are initialized outside of Γ0,

the sum of net information transfer becomes negative. From the net information transfer values, one

can conclude that the information values are proportional to the ability of individual generator causing

global instability, when the sum of total net information transfer of all the generators goes to negative,

the power system tends to be unstable.
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(a) The trajectories of δ1 to δ10 and δ̄
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(b) Collective dynamics δ̄ vs ω̄

Figure 3.14 The system is still stable when δ1(0) = δ3(0) = 2.5

3.4 Conclusion

We provided novel approach based on information transfer in a dynamical system to identify most

influential oscillator responsible for conformation change in a network of weakly nonlinear coupled

oscillator system. Identifying the most influential oscillator responsible for conformation change is a

complicated function of internal dynamics of the oscillators and the interconnection Laplacian. We

show that the net information transfer of individual oscillators captures this complicated function of

determining the most influential oscillator. In particular, the oscillator with maximum net information

transfer is verified to be most influential and can drive the network state from one potential well to
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Figure 3.15 The system becomes unstable when δ1(0) = δ3(0) = δ4(0) = 2.5

another. Some interesting results shows the connections between number of unstable generators and

global instability in the power system network. Future research work will focus on quantifying the

amount of information transfer required for conformation change of the network.
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CHAPTER 4. DATA DRIVEN EXPLORATION OF TRAFFIC NETWORK SYSTEM

DYNAMICS USING KOOPMAN OPERATOR-BASED FRAMEWORK

In this chapter, we explore the use of data-driven method to model the system dynamics of an

interstate traffic system with high resolution probe data. The dynamic mode decomposition is used to

analyze traffic patterns on a 290 mile interstate highway across Iowa. The results show the Koopman

Operator-based method method can effectively detect the changes in traffic system dynamics during

different time of day. Traffic dynamics during morning peak hours, evening peak hours and off-peak

were very different on the studied road. In contrast, the trends over multiple months were similar

during the same time periods. The study also found that inclement weather had a significant impact on

the system dynamics. In future, the proposed methodology can be used to gain insights in the system

dynamics of a traffic network. These models will be instrumental in optimal traffic control, traffic sensor

placement and other policy decisions affecting the capacity of the network.

4.1 Introduction

Accurate traffic speed information is important for traffic operation management system. Traffic

sensors, like wide range detector and automatic traffic recorder, play a critical role in real-time traffic

surveillance and information acquisition. Wide coverage of sensors can provide valuable information

for traffic operation, however, the density of traffic sensors is limited to due to the cost of sensors. The

implementation of advance traffic control and management system require accurate and reliable real-

time traffic condition estimation. Roadside sensors cannot provide enough information if the sensor

density is low, especially in rural areas.

The Interstate 80 (I-80) in Iowa is recognized as the Midwest connection between Omaha, Nebraska

and Chicago, Illinois. Along this 288.93 centerline mile interstate, the Iowa Department of Transporta-
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tion installed 156 point detectors (as of March 2016). These detectors largely monitor the metro areas

and major work zones. The point detectors sensor networks do not scale geographically to monitor

the whole interstate system. To monitor the entire I-80 in Iowa, about 867 traffic sensors would be

required, assuming that a sensor installed every one third of a mile along this highway, which will be

approximately $4.3 million in installation costs.

As an alternative to point sensor, probe vehicle data collected from GPS-enabled vehicles, mo-

bile devices and other sources have been used by many transportation agencies as a supplement of

roadside sensor data. Compared to the roadside sensors, probe vehicle data can provide localized in-

formation over a larger geographic region as it doesn’t require any physical infrastructure Bertini and

Tantiyanugulchai (2004).

Agencies have used state wide probe data for performance reporting, sensor spacing and other traffic

engineering and management applications Brennan et al. (2013); Feng et al. (2010). Probe data has also

been found reliable for congestion detection on freeways Adu-Gyamfi et al. (2015). To deal with the

massive scale of the data, most of the past studies either aggregate the probe data at 5-minute or higher

averages or focus on smaller geographic region. This paper uses the probe data at its highest resolution

across a whole interstate system to train data-driven methods for exploring traffic system dynamics.

Data-driven models, dynamic mode decomposition and spatiotemporal feature extraction are used in

this paper for understanding the traffic dynamics.

Dynamic Mode Decomposition method (DMD) has been used Schmid (2010) for the dynamical

analysis of the fluid flow field data. The basic idea behind this method is to construct a linear system

matrix, A, that best explain the time evolving data set {zt} i.e., zt+1 = Azt. Spectral analysis of

the linear A matrix will help identify spatial temporal coherent structures which are important from

dynamical systems perspective. Another data-driven technique, symbolic dynamics Rao et al. (2009),

has also been applied in parallel to explore and contrast the understanding of traffic system dynamics.

4.2 Data-driven Analysis Method: Koopman operator-based Framework

In Rowley et al. (2009), linear transfer Koopman operator-based framework is developed for the

finite dimensional approximation of the linear operator that best describes the time evolving data set or
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observables. The basic idea behind the framework is a linear, albeit infinite dimensional, representa-

tion of nonlinear system. In particular, for nonlinear system xt+1 = F (xt) one can associated linear

operator, U, mapping functions or observables ϕ(x) to functions as follows:

[Uϕ](x) = ϕ(F (x)).

Note that the data set {zt} can be viewed as a finite dimensional approximation of observables ϕ(x).

For the time series data zt ∈ RL obtained from the transportation network we are assuming that the data

is collected from L distributed sensors and there is underlying dynamical system possibly nonlinear that

governs the evolution of this data. There are several variant of approximating U, and one of the popular

methods is known as Dynamic Mode Decomposition (DMD) Schmid (2010). The basic idea behind

the DMD algorithm is to determine a linear mapping A that best connect the time evolving data set i.e.,

zt+1 ≈ Azt for t = 1, . . . , N − 1. In the following, we briefly described the DMD algorithm. Let

ZN
1 := {z1, . . . , zN} be the matrix of snapshots. The constant linear mapping A allows us to write the

snapshots as a Krylov sequence ZN
1 = {z1, Az1, A2z1, . . . , A

N−1z1}. For N sufficiently large vectors

in ZN
1 become linearly dependent and at this point we can write zN = a1z1 + . . .+ aN−1zN−1 + r =

ZN−1
1 a+ r, where a> = {a1, . . . , aN−1} and r is the residual vector. We can write the above in matrix

form as

A{z1, . . . , zN−1} = {z2, . . . , zN}

{z2, . . . , zN} = {z2, . . . , ZN−1
1 a}+ re>N−1,

AZN−1
1 = ZN

2 = ZN−1
1 S + re>N−1 (4.1)

where a> = {a1, . . . , aN−1}, eN−1 ∈ RN−1 is unit vector and S is a companion matrix consisting of

all zeros except for last column which is equal to a and sub-diagonal entries equal to one. The eigen-

values of S approximate some of the eigenvalues of A. For the robust computation of the spectrum of

A instead of computing the matrix S one instead compute matrix S̃ which is related to S via similarity

transformation. To achieve robustness one preprocess the time series data using singular value decom-

position i.e., ZN−1
1 = UΣW ∗. After substituting the SVD in the Eq. (4.1) and after simplification, we

obtain equation and after simplification, we obtain

U∗AU = U∗V N
2 WΣ−1 = S̃.
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The dynamics modes Πi can then be obtained as follows, Φi = Uyi, where yi is the ith eigenvector

corresponding to the eigenvalue λi of matrix S̃ i.e., S̃yi = λiyi. Dynamic mode decomposition method

provides a systematic approach for extracting spatial-temporal coherent structures from time series

data. Comparing it with proper orthogonal decomposition (POD), which is another popular method for

extracting coherent structure, it can be said that while POD attempts decomposition of data set based

on orthogonality in space, DMD attempts to represent the data sequence by orthogonalizing it in time.

4.3 Simulation Results

4.3.1 Data

The probe vehicle data used in this study were obtained from INRIX servers INRIX (2016). Real-

time probe speeds are available for I-80 in Iowa for more than 90% of the time over the year. Data are

reported by road segment. Average vehicle speed on each segment were obtained by 20-second interval.

Speed on shorter segments between interchange exit and entrance ramps were removed from the raw

dataset to focus on the characteristics of mainline traffic. Data were collected for Jan. and Feb. 2016,

and a total of 317 segments on I-80 westbound with an average length of 0.9 mile were studied. For

weekdays, the period from 7 AM to 9 AM is defined as morning peak, and the period from 4 PM to

7 PM is defined as evening peak. The time between 10 AM to 3 PM is used as off-peak period. For

weekends, data for 5 AM to 10 PM are used in the following analysis.

4.3.2 Dynamic mode decomposition

In order to investigate the dynamic features of system model, we plot the spectrum of the linear, A,

matrix obtained from the Dynamic Mode Decomposition analysis. The spectral plot for the month of

January during the morning and evening rush time is shown in Fig. 4.1. All the eigenvalues are inside

the unit circle indicating stable system dynamics.

In Figs. 4.2 and 4.3 we plot the first two dominant eigenvectors for the Jan. 4 AM and Jan. 25

PM data. Comparing the morning and evening dominant modes we notice that the morning modes

has a distinct peak at a fixed spatial location whereas modes obtained from the evening data has no

such predominant peak. The spatial location for the dominant peak can be identified right around the
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Figure 4.1 Spectrum plots

metropolitan area of Des Moines on the I-80 corridor. Insight gained from the dominant mode can be

used for the reduced order modeling and understanding spatial-temporal traffic pattern from the time

series data. The difference between the dominant eigenvector for the morning and evening data can be

explained using the fact that the morning traffic pattern are more regular compared to evening traffic.

Our future research efforts will be to combine the dominant modes and eigenvalues for the purpose of

reduced order modeling and for the purpose of optimal sensor placement. In Fig. 4.4, we show the

spectrum plot for the day of Feb. 14 AM. Comparing this spectrum plot with Fig. 4.1 and Fig. 4.2, we

notice considerable discrepancy. We notice that the eigenvalues plot is quite irregular and there is no

one dominant peak in the eigenvector. This discrepancy can be explained by the fact that on Feb. 14

there was snow storm.

Before analyzing traffic patterns in certain periods (e.g. traffic peak hours and off-peak hours,

weekday and weekend), it is necessary to investigate the data for detecting special event, such as severe

weather condition, local events, and traffic incidents, since these events could significantly change traffic

flow characteristics. Under this assumption, similarity among days with similar event will be different

from that for any other days. The results are shown in Fig. 4.1, similarity of one day is the sum of
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Figure 4.2 First two dominant modes for Jan. 4 AM data

similarities between this day and the rest of days in this month. An obvious decrease of similarity is

observed during Jan. 24-26 when a snowstorm produced a average of about 3 inches of snow all over

Iowa Arritt (2016). It can be seen that, the similarity metric can be easily applied to detect traffic event.

Traffic patterns during peak and off-peak hours are analyzed using the data in Jan. and Feb. 2016, to

investigate the traffic flow characteristics during different periods of day.

4.3.3 Discussions

Exploring traffic flow characteristics has great benefits in large-scale traffic control and input-output

optimization in sensor placement and other transportation investment planning.

The dynamic mode decomposition, as a robust and reliable algorithm to extract spectrum feature

from data sequence, indicates the existence of traffic patterns. Further application of the dominant

spatio-temporal structures could extend to pattern recognition for inference and prediction.

Spatiotemproal pattern network, fulfills the task in spatiotemporal feature extraction: (i) discovering

system-wide behavior for detecting special events, e.g. severe weather condition, and traffic incidents,

(ii) exploring traffic patterns in different periods of day (e.g., morning peak, evening peak, off-peak

hours, weekday, weekend), (iii) interpreting causality between segments for finding dominant features
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Figure 4.3 First two dominant modes for Jan. 25 PM data

in the dynamic system and quantitatively estimating significance of features with information based

metric.

By comparing dominant features in Figs. 4.5 and 4.6, similar phenomenon is observed that fewer

dominant features are presented in the morning peak, indicating modeling the morning peak is less

complex than the evening peak in this case.

Note, the analysis is limited to the westbound speed data in Jan. and Feb. 2016. More analysis is

being implemented with large Archive data for both I80 eastbound and westbound traffic, and integrated

with weather and traffic incident data, to detect traffic patterns during different time of day and seasonal

trends.

While the current work is focusing on validating the methods for extracting spatiotemporal features

in the large-scale system, further works will pursue the following: (i) more analysis and validation in

different periods and areas, and (ii) prediction of traffic flow in all segments with optimization strategy

in sensor placement.
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4.4 Conclusions

This paper explored the application of data-driven methods in analyzing transportation system.

The data-driven approach discussed here, dynamic mode decomposition, shows significant advances

in spatiotemporal feature extraction, especially in: (i) processing large and high-resolution dataset, (ii)

investigating dynamic modes in the system, and (iii) interpreting spatiotemporal causality to capture

system-wide behavior in diverse situations (e.g., weather condition, traffic patterns).

The analysis of dynamic behaviors in traffic flow could be applied to real-time congestion detec-

tion, incident detection, and performance reporting to provide decision support for traffic operation. The

characterization of speeds could identify homogeneous road segments and provide reference for opti-

mizing traffic sensor spacing to support transportation agencies in infrastructure investment planning.

The deployment of large-scale control strategies for traffic network has increased the need for more

accurate and reliable real-time traffic condition prediction. Further modeling based on identified traffic

patterns and dominate factors as well as the use of large and high-resolution dataset can improve the ac-

curacy and reliability of traffic flow forecasting, and eventually, enhance the performance of large-scale

traffic network management.
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(a) Morning Peak

(b) Evening Peak

Figure 4.5 Dominant eigenvectors for Jan. 4th, 2016
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Figure 4.6 Traffic patterns during weekdays along I-80 in Iowa using westbound traffic. The segment
in red indicates higher causality, and the segments with the same color represent same
causality to the other segments.
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CHAPTER 5. SUMMARY AND DISCUSSION

In the present research, we propose a novel approach to analyze the phenomenon of conformation

change in a network of coupled oscillators based on an information theoretic measure called information

transfer. We show that the net information transfer of individual oscillators captures this complicated

function of determining the most influential oscillator. In particular, the oscillator with maximum net

information transfer is verified to be most influential and can drive the network state from one potential

well to another.

To investigate further into the phenomenon of conformation change, more case studies in 39 bus

power system are implemented. The similar conclusion is drawn from the simulation results. One

hypothesis is formalized that net information values be proportional to the ability of individual generator

causing global instability, when the sum of total net information transfer of all the generators goes to

negative, the power system tends to be unstable.

In the rest of the paper, we explored the application of data-driven methods in analyzing transporta-

tion system. The data-driven approach based on Koopman Operator, dynamic mode decomposition,

shows significant advances in spatiotemporal feature extraction, especially in: (i) processing large and

high-resolution dataset, (ii) investigating dynamic modes in the system, and (iii) interpreting spatiotem-

poral causality to capture system-wide behavior in diverse situations (e.g., weather condition, traffic

patterns).

In the future work, the analysis of dynamic behaviors in multi-agent network system could be

applied to real-time detection, clustering identification, and instability prediction in power system. The

potential of application in large scale real-time data is also shown in the I-80 transportation scenario.

More practical work on the information transfer computation in nonlinear system and higher-order

system will be implemented.
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